KARO

Awareness-Plakat:



20. März 2020 — Downloaden, ausdrucken, aufhängen und elektronisch teilen:

> Plakat, Deutsch
> Poster, English
> Affico, italiano
> Affiche, français




Coronavirus: Symptome, Statistiken und tägliche Tracking.



Olafur Eliasson, The Weather Project, Turbinenhalle in der Tate Modern, London, 2003.

15. März 2020 — In der Tat, it’s the end of the world as we know it. Wir haben einige Informationen über die Symptome und den Zyklus des Coronavirus gesammelt. Alle Quellen finden Sie weiter unten.



Typische Symptome von Covid-19
Covid-19 verursacht typischerweise grippeähnliche Symptome wie Fieber und Husten. Bei einigen Patienten — insbesondere bei älteren Menschen und bei Patienten mit anderen chronischen Erkrankungen — können sich diese Symptome zu einer Lungenentzündung mit Engegefühl in der Brust, Schmerzen in der Brust und Atemnot entwickeln. Es scheint mit Fieber zu beginnen, gefolgt von einem trockenen Husten.

Nach einer Woche kann es zu weiterer Atemnot kommen, wobei etwa 20% der Patienten eine Krankenhausbehandlung benötigen. Insbesondere scheint die Covid-19-Infektion selten eine laufende Nase, Niesen oder Halsschmerzen zu verursachen (diese Symptome wurden nur bei etwa 5% der Patienten beobachtet). Halsschmerzen, Niesen und verstopfte Nase sind meist Anzeichen einer Erkältung.



80% der Fälle sind mild
Basierend auf allen 72.314 Fällen* von Covid-19 in China zum 11. Februar 2020:
— 80,9% der Infektionen sind mild (mit grippeähnlichen Symptomen) und können sich zu Hause erholen
— 13,8% sind schwer und entwickeln schwere Krankheiten wie Lungenentzündung und Atemnot
— 4,7% als kritisch und können Folgendes umfassen: Atemversagen, septischer Schock und Multiorganversagen
— 2% der gemeldeten Fälle sind tödlich
— Das Todesrisiko steigt, je älter Sie sind
— Relativ wenige Fälle wurden bei Kindern beobachtet

* Aus einem Forschungsbericht über bestätigte, vermutete und asymptomatische Fälle, der am 17. Februar 2020 vom chinesischen CCDC veröffentlicht und im Chinese Journal of Epidemiology veröffentlicht wurde.



Bereits bestehende Krankheiten, die das Risiko für Patienten erhöhen:
— Herzkreislauferkrankung
— Diabetes
— Chronische Atemwegserkrankung
— Bluthochdruck

Es muss angemerkt werden, dass einige ansonsten gesunde Menschen nach einer Infektion mit dem Virus eine schwere Form der Lungenentzündung entwickelt haben. Der Grund dafür ist unbekannt und wird noch untersucht.



Tägliche Verfolgung der Symptome

Erste 1–3 Tage 
— Die Symptome ähneln denen der Erkältung
— Halsentzündung
— Keine Grippe, nicht müde, immer noch normal essen

Tag 4
— Halsentzündung
— Erste Anzeichen von Krankheit
— Körpertemperatur steigt von 36.5° (variiert von Person zu Person)
— Der Appetitverlust beginnt, es ist schwer zu essen
— Leichte Kopfschmerzen
— Milder Durchfall

Tag 5
— Halsschmerzen, Husten
— Leicht heisser Körper, Temperatur steigt auf 36.5–36.7°
— Müde, schwindelig, Schmerzen in den Gelenken
— Dieses Stadium ist schwer als Erkältung oder Grippe zu diagnostizieren

Tag 6
— Leichtes Fieber beginnt, ca. 37°
— Kruppenhusten oder trockener Husten
— Halsschmerzen beim Essen, Sprechen oder Schlucken
— Müdigkeit, Übelkeit
— Das Atmen ist schwierig
— Möglicher Durchfall, Erbrechen

Tag 7
— Das Fieber hat sich erhöht, 37.4–37.8°
— Viel Husten
— Körperschmerzen, der Kopf fühlt sich schwer an
— Häufiges Erstickungsgefühl
— Mehr Durchfall
— Erbrechen

Tag 8 
— Fieber ist 38°+
— Schwer zu atmen, Kurzatmigkeit
— Weiterer Husten
— Kopfschmerzen, Gelenkschmerzen, Rückenschmerzen 

Tag 9 (in diesem Stadium sollten Blutuntersuchungen und Lungenröntgenaufnahmen durchgeführt werden
— Die Symptome verschlechtern sich
— Hohes Fieber
— Nicht husten, aber die Symptome verschlimmern sich
— Atembeschwerden

Die Symptome variieren je nach Widerstand und Immunität des Patienten. Es dauert 10 bis 14 Tage, bis sich bei einer gesunden Person Symptome entwickeln, bei einer Person mit gesundheitlichen Problemen nur 4 bis 5 Tage.

> healthxcenter.com



Beispiele für eine mögliche Entwicklung von Symptomen (aus tatsächlichen Fällen)

Ein Mann in den Vierzigern in Japan:
— Tag 1: Körperliche Beschwerden und Muskelschmerzen
— Später mit Lungenentzündung diagnostiziert

Ein Mann in den 60ern in Japan:
— Tag 1: Erste Symptome von leichtem Fieber und Halsschmerzen

Ein Mann in den Vierzigern in Japan:
— Tag 1: Schüttelfrost, Schwitzen und Unwohlsein
— Tag 4: Fieber, Muskelschmerzen und Husten

Eine Frau in den 70ern in Japan:
— Tag 1: 38° Fieber für einige Minuten
— Tag 2+3: Sie ist auf einer Bustour gegangen
— Tag 5: ins Krankenhaus eingeliefert
— Tag 6: Symptome einer Lungenentzündung

Eine Frau in den Vierzigern in Japan:
— Tag 1: Niedriges Fieber
— Tag 2: 38° Fieber
— Tag 6: Ist zu Hause behandelt worden

Ein Mann in den 60ern in Japan:
— Tag 1: Erkältungssymptome
— Tag 6: Fieber von 39°C (102.2°F)
— Tag 8: Lungenentzündung

Ein weiterer Patient in China mit Typ-2-Diabetes und Bluthochdruck in der Vorgeschichte:
— 22. Januar: Fieber und Husten
— 5. Februar: ist gestorben

Erster Tod auf den Philippinen (44 Jahre alte Chinesen, andere vorbestehende Gesundheitszustände):
— 25. Januar: Fieber, Husten und Halsschmerzen (ins Krankenhaus geliefert)
— Entwickelte eine schwere Lungenentzündung
— 2. Februar: ist gestorben



Wie lange dauern die Symptome?

Unter Verwendung der verfügbaren vorläufigen Daten wurde in dem am 28. Februar 2020 von der WHO veröffentlichten Bericht der Gemeinsamen Mission WHO-China, der auf 55’924 im Labor bestätigten Fällen basiert, die folgende mittlere Zeit vom Auftreten der Symptome bis zur klinischen Genesung beobachtet:

— Leichte Fälle: ca. 2 Wochen
— Schwere oder kritische Erkrankung: 3–6 Wochen
— Zeit vom Beginn bis zur Entwicklung einer schweren Krankheit (einschliesslich Hypoxie, Sauerstoffmangel an einem bestimmten Körperteil): 1 Woche

Bei verstorbenen Patienten liegt die Zeit vom Auftreten der Symptome bis zum Ergebnis zwischen 2 und 8 Wochen.

> healthxcenter.com





Combating the coronavirus: Why soap works so well.
by Palli Thordarson



Coronaviruses are a group of viruses that have a halo, or crown-like (corona) appearance when viewed under an electron microscope. Photo: Dr. Fred Murphy (Centers for Disease Control and Prevention)

9 March 2020 — A two-part Twitter thread about soap, viruses and supramolecular chemistry.
(Ed. By the way, SARS-CoV-2 is the virus, COVID-19 is the disease.)



Part 1

1/25
Why does soap work so well on the SARS-CoV-2, the coronavirus and indeed most viruses? Because it is a self-assembled nanoparticle in which the weakest link is the lipid (fatty) bilayer. A two part thread about soap, viruses and supramolecular chemistry.‬

2/25
The soap dissolves the fat membrane and the virus falls apart like a house of cards and dies, or rather, we should say it becomes inactive as viruses aren’t really alive. Viruses can be active outside the body for hours, even days.

3/25
Disinfectants, or liquids, wipes, gels and creams containing alcohol (and soap) have a similar effects but are not really quite as good as normal soap. Apart from the alcohol and soap, the antibacterial agents in these products don’t affect the virus structure much at all.

4/25
Consequently, many antibacterial products are basically just an expensive version of soap in terms of how they act on viruses. Soap is the best but alcohol wipes are good when soap is not practical or handy (e.g. office receptions).

5/25
But why exactly is soap so good? To explain that, I will take you through a bit of a journey through supramolecular ‪chemistry‬, nanoscience and virology. I try to explain this in generic terms as much as possible, which means leaving some specialist chemistry terms out.

6/25
I point out to that while I am expert in supramolecular chemistry and the assembly of nanoparticles, I am not a virologist. The image with the first tweet is from an excellent post here which is dense with good virology info:



The weakest link of the coronavirus is it's fatty bilayer (lipid).
E = small envelope protein
S = spike glycoprotein
M = membrane
Illustration: David M. Knipe and Peter M. Howley (ed.), Fields Virology, 6th Edition. Wolters Kluwer, 2013.


7/25
I have always been fascinated by viruses as I see them as one of them most spectacular examples of how supramolecular chemistry and nanoscience can converge. Most viruses consist of three key building blocks: RNA, proteins and lipids.

8/25
The RNA is the viral genetic material — it is very similar to DNA. The proteins have several roles including breaking into the target cell, assist with virus replication and basically to be a key building block (like a brick in a house) in the whole virus structure.

9/25
The lipids then form a coat around the virus, both for protection and to assist with its spread and cellular invasion. The RNA, proteins and lipids self-assemble to form the virus. Critically, there are no strong covalent bonds holding these units together.

10/25
Instead the viral self-assembly is based on weak non-covalent interactions between the proteins, RNA and lipids. Together these act together like a velcro so it is very hard to break up the self-assembled viral particle. Still, we can do it (e.g. with soap!).

11/25
Most viruses, including the coronavirus, are between 50–200 nanometers — so they are truly nanoparticles. Nanoparticles have complex interactions with surfaces they are on. Same with viruses. Skin, steel, timber, fabric, paint and porcelain are very different surfaces.

12/25
When a virus invades a cell, the RNA hijacks the cellular machinery like a computer virus (!) and forces the cell to start to makes a lot of fresh copies of its own RNA and the various proteins that make up the virus.

13/25
These new RNA and protein molecules, self-assemble with lipids (usually readily present in the cell) to form new copies of the virus. That is, the virus does not photocopy itself, it makes copies of the building blocks which then self-assemble into new viruses!

14/25
All those new viruses eventually overwhelm the cell and it dies/explodes releasing viruses which then go on to infect more cells. In the lungs, some of these viruses end up in the airways and the mucous membranes surrounding these.

15/25
When you cough, or especially when you sneeze, tiny droplets from the airways can fly up to 10 meters (30 ft)! The larger ones are thought to be main coronavirus carriers and they can go at least 2 m (7 ft). Thus — cover your coughs and sneezes to people!

16/25
These tiny droplets end on surfaces and often dry out quickly. But the viruses are still active! What happens next is all about supramolecular chemistry and how self-assembled nanoparticles (like the viruses) interact with their environment!

17/25
Now it is time to introduce a powerful supramolecular chemistry concept that effectively says: similar molecules appear to interact more strongly with each other than dissimilar ones. Wood, fabric and not to mention skin interact fairly strongly with viruses.

18/25
Contrast this with steel, porcelain and at least some plastics, e.g. teflon. The surface structure also matter – the flatter the surface the less the virus will stick to the surface. Rougher surfaces can actually pull the virus apart.

19/25
So why are surfaces different? The virus is held together by a combination of hydrogen bonds (like those in water) and what we call hydrophilic or fat-like interactions. The surface of fibres or wood for instance can form a lot of hydrogen bonds with the virus.

20/25
In contrast steel, porcelain or teflon do not form a lot of hydrogen bond with the virus. So the virus is not strongly bound to these surfaces. The virus is quite stable on these surface whereas it doesn’t stay active for as long on say fabric or wood.

21/25
For how long does the virus stay active? It depends. The SARS-CoV-2 coronavirus is thought to stay active on favourable surfaces for hours, possibly a day. Moisture (dissolves), sun light (UV light) and heat (molecular motions) all make the virus less stable.

22/25
The skin is an ideal surface for a virus! It is organic and the proteins and fatty acids in the dead cells on the surface interact with the virus through both hydrogen bonds and the fat-like hydrophilic interactions.

23/25
So when you touch say a steel surface with a virus particle on it, it will stick to your skin and hence get transferred onto your hands. But you are not (yet) infected. If you touch your face though, the virus can get transferred from your hands and on to your face.

24/25
And now the virus is dangerously close to the airways and the mucus type membranes in and around your mouth and eyes. So the virus can get in… and voila! You are infected (that is, unless your immune system kills the virus).

25/25
If the virus is on your hands you can pass it on by shaking someone’s else hand. Kisses, well, that’s pretty obvious… It comes without saying that if someone sneezes right in your face you are kind of stuffed. Part 2 about soap coming next (25 post limit reached)!



Part 2

26/39
About soap, supramolecular chemistry and viruses. So how often do you touch your face? It turns out most people touch the face once every 2–5 minutes! Yeah, so you at high risk once the virus gets on your hands unless you can wash the active virus off.

27/39
So let’s try washing it off with plain water. It might just work. But water only competes with the strong glue-like interactions between the skin and virus via hydrogen bonds. They virus is quite sticky and may not budge. Water isn’t enough.

28/39
Soapy water is totally different. Soap contains fat-like substances knowns as amphiphiles, some structurally very similar to the lipids in the virus membrane. The soap molecules compete with the lipids in the virus membrane.

29/39
The soap molecules also compete with a lot other non-covalent bonds that help the proteins, RNA and the lipids to stick together. The soap is effectively dissolving the glue that holds the virus together. Add to that all the water.

30/39
The soap also outcompetes the interactions between the virus and the skin surface. Soon the viruses get detached and fall a part like a house of cards due to the combined action of the soap and water. The virus is gone!

31/39
The skin is quite rough and wrinkly which is why you do need a fair amount of rubbing and soaking to ensure the soap reaches very crook and nanny on the skin surface that could be hiding active viruses.

32/39
Alcohol based products, which pretty includes all disinfectants and antibacterial products contain a high-percentage alcohol solution, typically 60–80% ethanol, sometimes with a bit of isopropanol as well and then water plus a bit of a soap.

33/39
Ethanol and other alcohols do not only readily form hydrogen bonds with the virus material but as a solvent, are more lipophilic than water. Hence alcohol do also dissolve the lipid membrane and disrupt other supramolecular interactions in the virus.

34/39
However, you need a fairly high concentration (maybe +60%) of the alcohol to get a rapid dissolution of the virus. Vodka or whiskey (usually 40% ethanol), will not dissolve the virus as quickly. Overall alcohol is not quite as good as soap at this task.

35/39
Nearly all antibacterial products contain alcohol and some soap and this does help killing viruses. But some also include active bacterial killing agents, like triclosan. Those, however, do basically nothing to the virus!

36/39
To sum up, viruses are almost like little grease-nanoparticles. They can stay active for many hours on surfaces and then get picked up by touch. They then get to our face and infect us because most of us touch the face quite frequently.

37/39
Water is not very effective alone in washing the virus off our hands. Alcohol based product work better. But nothing beats soap – the virus detaches from the skin and falls apart very readily in soapy water.

38/39
Here you have it – supramolecular chemistry and nanoscience tell us not only a lot about how the virus self-assembled into a functional active menace, but also how we can beat viruses with something as simple as soap.

39/39
Thank you for reading my first thread. Apologies for any mistakes in the above. I might have some virology details wrong here as I am not a virologist unlike ‪@MackayIM‬ who I am a big fan of! But I hope this inspires you not only to use soap but to read up on chemistry!


Palli Thordarson (@PalliThordarson), B.Sc. (Iceland) 1996, Ph.D. (Sydney) 2001, CChem, FRACI, FRSC
Professor, School of Chemistry UNSW, Sydney, New South Wales

Research Group website: http://thordarsongroup.org

Biographical Details
B.Sc. Chemistry from the University of Iceland (1996), Researcher, Science Institute, the University of Iceland (1996–1997). Ph.D, The University of Sydney (1997–2001). Postdoctoral Fellow, the University of Nijmegen, The Netherlands (2001), Marie Curie Postdoctoral Fellow, the University of Nijmegen, The Netherlands (2001–2003). The University of Sydney SESQUI Postdoctoral Research Fellow (2003–2005). Australian Research Council, Australian Research Fellow, The University of Sydney (2006–2007) and UNSW (2007–2010). Appointed Senior Lecturer, UNSW (2007); Australian Research Council Future Fellow (2012–2016), Associate Professor (2013). Professor (2017).
Marie Curie Fellowship (2001), Sesqui Fellowship (2003), NSW Young Tall Poppy Science Prize (2008), The International Society of Porphyrins and Phthalocaynines/Journal of Porphyrins and Phthalocyanines) Young Investigator Award (2010), Le Fèvre Memorial Prize by the Australian Academy of Science (2012). Fellow of the Royal Australian Chemical Institute (2017), Fellow of the Royal Socieity of Chemistry UK (2017).


> Palli Thordarson on Twitter
> Coronavirus Tech Handbook (in Deutsch)
> SARS-CoV-2 and the lessons we have to learn from it




News update: Studio concert postponed.



2 March 2020 — Today’s studio concert by Shadowplay has been postponed to help prevent the spread of Covid-19. We will keep you posted when the concert has been re-scheduled. Stay healthy!

> Listen to Shadowplay





K’Werk-Programm 2020: Neon is the New Orange.



17. Februar 2020 — Die K’Werk Bildschule entstand im Jahr 2005 mit dem Ziel, im bildnerischen und gestalterischen Bereich ein den Musikschulen vergleichbares Bildungsangebot zu schaffen. Es richtet sich an Kinder und Jugendliche zwischen 5 und 16 Jahren, die ihre kreativen Fähigkeiten in einer experimentierfreudigen und konzentrierten Atmosphäre entdecken und entwickeln möchten.







Die K’Werk Bildschule ist Teil der Schule für Gestaltung Basel und damit ein öffentliches Bildungsangebot des Kantons Basel-Stadt.

K’Werk Programm 1. Halbhahr 2020, 48 Seiten, 2-farbig mit einem 4-farbigen Bildteil. Erhältlich bei K’Werk Bildschule: www.kwerk.ch oder direkt bei uns.




New book release: Mixing, Punks and Background Noise.



2 January 2020 — This little paperback is an explosive collision of two of our favorite subjects: Real Punk Ginger Beer and music. Mixing, Punks and Background Noise is packed with 35 mixed drink recipes and 31 black and white photographs of 15 bands and 49 musicians from around the globe.

Learn to mix common cocktails such as Moscow Mule and Dark and Stormy and the lesser known Matcha Ginger Beer, Ginger Beer Caipirinha and Vintage Punk. All of the recipes use our own Real Punk Ginger Beer as a mixer. And for the especially ambitioned, we have included 2 recipes for making your own DIY infused aromatic bitters.

The musicians are not only esteemed stars, but also local artists who we highly admire. The concert photos include the following performers: Steve Albini & Shellac, Asbest, Bernie the Attorney, Jehnny Beth & Savages, Big Muff, Nick Cave, Dead Moon, Denner Clan, Michael Gira & Swans, Gustav Gurke & Peter Paprika, Debbie Harry, Rowland S. Howard, L’Arbre bizarre, Lombego Surfers, John Maher of Buzzcocks, Dominic Aitchison and Stuart Braithwaite of Mogwai, Chris Pravdica, Joey Ramone, Henry Rollins, Siouxsie Sioux, Mark E. Smith, Thurston Moore, Todd Trainer, Totem Nevada, Treelove, The Tutu Three, Warpaint, Norman Westberg, Bob Weston and Jack White.

Many thanks to Andy Chislehurst (John Maher), David Corio (Nick Cave, Rowland S. Howard, Mark E. Smith), Ed Perlstein (Joey Ramone) and Derek Ridgers (Siouxsie Sioux) for graciously allowing us to use their vintage photographs! All other photographs are by Susan Knapp.

Mixing, Punks and Background Noise — Real Punk Ginger Beer and the Art of Mixology: 167 x 215 mm, 64 pages, 31 black and white photographs, softcover, in English, limited edition of 250 copies. CHF 10, EUR 9 plus shipping. Real Punk Ginger Beer can be ordered directly from us at Karo Publishing.